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Abstract. The procedure used recently by Hawking to demonstrate the creation of massless 
particles by black holes is applied to the Rindler coordinate system in flat space-time. The 
result is that an observer who undergoes a uniform acceleration K apparently sees a fixed 
surface radiate with a temperature of ~/27t .  Some implications of this result are discussed. 

1. Introduction 

It has long been appreciated that the definition of ‘particle’ in quantum field theory 
depends on the coordinate system used to describe space-time. Even in flat space-time 
it is possible to construct (Rindler 1966, Fulling 1972, 1973) a self-consistent quantiza- 
tion scheme based on Rindler (rather than Minkowski) coordinates which differs from 
the conventional quantization. 

Rindler coordinates may be defined for two-dimensional Minkowski space by 

2 = (x2 - p)”* o < z < m  (1) 

t’ = tanh- ‘(t/x), -a<<<<. (2) 

The coordinates (2, 0 )  cover the wedge-shaped region shown in figure 1. Lines of constant 
z correspond to  world lines of observers undergoing uniform acceleration of 2 - l .  The 

Figure 1. 
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two asymptotes z = 0, v = - 00 and z = 0, v = + 00 therefore behave as event horizons, 
and will be referred to as the past and future horizons respectively. The metric tensor of 
flat space-time in Rindler coordinates is 

Z* dVQ dv - dz Q dz (3) 
which has a coordinate singularity at z = 0. 

From the foregoing properties of the Rindler wedge, a close similarity with the static 
exterior region of a spherically symmetric black hole covered by Schwarzschild co- 
ordinates is apparent. An analysis of flat space quantum field theory in Rindler (1966) 
coordinates may therefore be regarded as a test case for the Schwarzschild system 
(Fulling 1972,1973), with the added advantages of conceptual simplicity and the know- 
ledge that the ‘correct’ quantization scheme based on Minkowski coordinates is always 
available for comparison. 

In this paper a hitherto little suspected property of Rindler quantization of a massless 
scalar field is discussed. The motivation for this work is the recent result by Hawking 
(1975) that a steady rate of production of massless particles occurs in the exterior 
region of a Schwarzschild black hole. This result is somewhat surprising inasmuch as 
strict particle conservation would normally be expected in this static region of space- 
time (Blum 1973, Davies and Taylor 1974). Hawking’s result hinges on the existence of 
the event horizon in the Schwarzschild system, which divides the solutions of the massless 
wave equation into two classes-those solutions which manage to propagate from 
9- through the centre of the object and out to 9+, and those which are trapped by the 
formation of the horizon and do not reach 9’. The sudden variation in the Fourier 
transform on 9- due to this division is responsible for the particle production. 

It might be expected that a similar situation would arise in the Rindler case. Almost 
identical properties may be ascribed to the Rindler system by equipping the space with 
a reflecting wall placed at a distance a to the right of the origin as shown in figure 2. The 
purpose of this wall is to turn incoming (left-moving) waves into outgoing (right-moving) 
waves, in the same fashion that incoming waves are changed into outgoing waves by 
passage through the centre of a collapsing object in the black hole system. A straight- 
forward application of Hawking’s argument to this flat space system leads to a Fourier 
transform which is essentially identical to that of the Schwarzschild case. The upshot of 
this is that the fixed reflecting wall appears to an accelerating observer to radiate at a 

Figure 2. 
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constant temperature of (h/2nkc) x (acceleration) K in cgs units. In geometric units the 
acceleration may be equated to the surface gravity K of an object of mass M. In that case 
the radiation has a temperature of 4271 which is exactly the temperature of a black hole 
with surface gravity K found by Hawking. Some of the implications of this result are 
discussed in B 4. 

2. The scalar wave equation in Rindler coordinates 

The general massless covariant wave equation is taken to be 

where g = det g,, and g,, is the metric tensor. In the metric described by (3), equation (4) 
becomes 

-8,24(z, U) = z ,+z- #(z, U) ( ’:z2 :A 
which may readily be solved to yield solutions of the form 

A, exp[iw(u & In z)],  ( 5 )  

where o is a dimensionless constant and changes in the scale of z only affect A, to the 
extent of a factor of modulus unity. 

The surfaces U = constant are Cauchy surfaces (for finite U )  for the wedge-shaped 
region covered by the Rindler coordinates, so we may express the field at a general 
point ( z , u )  in terms of a complete set of solutions of the type ( 5 )  over one of the 
v = constant surfaces. (The actual details of a consistent quantum field theory for this 
system have been given by Fulling (1972, 1973) and will not be repeated here.) In par- 
ticular we may consider the decomposition 

4 ( z ,  4 = (LL, + a x , )  (6) 
(U 

on a surface with large negative U. In a quantum theory a,,,aL may be interpreted as 
annihilation and creation operators for incoming (left-moving) scalar particles respec- 
tively. so that we may put 

(7) f, - U -  l’’ exp[io(v + In z)] 

where the o-l” term has been included because a continuum normalization of the 
eigenfunctions f, is being adopted. 

In a region such as the point 0 of figure 2, contributions to the field disturbance will 
arise from two sources. First the incoming disturbance discussed above, which will cross 
the surface U = 00. This surface is a future event horizon for the accelerating observers, 
so that the region beyond is analogous to a ‘black hole’. There will also be disturbances 
from the left (outgoing) which are caused by reflection at the wall, but which appear to 
an observer 0 to have crossed the past event horizon. 

In a region near 0 (U large and positive) we may therefore decompose the field as 
follows : 
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where g, represent solutions which are reflected by the wall and pass out to large z ,  
and h, represent solutions which cross the horizon into the 'black hole'. The operators 
b and c are the respective annihilation and creation operators for particles of these types. 

The interesting results come from the former solutions. It is not necessary to con- 
s k k  the detailed form of g, in the region of the wall as the particle production effects 
do not depend on this. 

In the region of 0 we have 

g, - C O - ~ ' '  exp[iw(c- In z)] (9) 

while if we pass backwards in time through the reflection at the wall and out to the region 
of large negative v,  g, will be shown not to have the form (7) in this region. If we write 

then a,,. and P,,. are in general nonzero. Thus the vacuum state for incoming particles 
will not be the vacuum state for an observer near 0, who will instead see the production 
of particles with an expectation value 

for the range o to o+ do .  

3. Evaluation of 0,. 

To evaluate the amount of particle production we must first determine the form of+g, 
in the region of large negative U. This may easily be achieved by adopting the argument 
used by Hawking in the black hole case. In figure 2 a null line v has been drawn parallel 
to the future event horizon and at a distance (on the diagram) c from it. The equations 
of null lines in Rindler coordinates are 

ze*" = constant (12) 

In z--v = In J2+ Inr 

where the constant is the value of z for v = 0. The null line v will have the equation 

(1 3) 

in the region of 0. The null lines represent surfaces of constant phase, as may be verified 
by inserting (13) into (9). The phase for a given t may be chosen as 

(14) - o(1n J2 + In c) .  

As the null line v approaches the horizon, E -+ 0 and the phase (14) diverges. 
We may follow v backwards in time through the reflection and out to the region of 

large negative v,  as shown in figure 2. In this region, as c -, 0, the surfaces of constant 
phase of g, will tend to crowd up faster and faster onto a limiting null line v o ,  after which 
g, = 0, because all later disturbances are 'trapped'by the futureevent horizon. The situa- 
tion is therefore almost exactly the same as in the black hole case. 

Introducing for convenience an advanced time T defined by 

7 = lnz+u (15) 
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we may express E in terms of the value of 7. Incoming null lines are given from (12) by 

where 7 0  = In a. For ( T ~  - t) small and positive, equation (17) may be written 

It follows that the phase of g, in this region is 

- w [ t o  +In(?, - t)] 

and that g, has the form 

(constant)"w- ' I 2  exp[ - i o  In(?, - t)] 5 C To 
(19) 

The coefficients uoor and p,,. in equation (10) may be calculated by taking a Fourier 
transform ofg, with respect to 7. The result is the same as that given by Hawking (1975): 

0 t > to. 

If equation (21) is substituted into expression (11) for the amount of particle produc- 
tion in the modes o to o + do, it diverges logarithmically. As pointed out by Hawking 
this result corresponds to a steady rate of particle production over an infinite period of 
time. This may be demonstrated by constructing wave packets (the reader is referred to 
Hawking's paper for details). For consider an incoming wave packet approaching the 
wall at an advanced time t > to. In the absence of any potential field (which would 
cause a back-scattering analogous to the metric back-scattering in the black hole case, 
and irrelevant to the main argument here) all of this wave packet will cross the future 
horizon into the 'black hole' region, and will appear to a Rindler observer such as 0 to 
have been completely absorbed by the wall. However, 0 will also see the emission of 
radiation by the wall, due to the particle production effect, from wave packets which 
approach the wall for times t < to, and then reflect to reach 0. To an observer at 0 all 
of these outgoing wave packets will appear to have crossed the past horizon (in the 
absence of the wall) in a fashion identical to that of the passage of the former incoming 
packet into the 'black hole' region. It follows that there is a fixed ratio of emission to 
absorption cross section for particles. The ratio, which is essentially determined by 
equations (20) and (21). turns out to be (Hawking 1975) 

(e2nm- 11-1  (22) 

which hay the form of that for a black body radiator of temperature (3n)- in our units 
( i t  does not depend on the value of a). 
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To convert expression (22) to geometric units note that an interval of proper time 
along a world line z = constant is given from (3) as z du, so that an observer with co- 
ordinates ( z ,  U) would interpret a wave with time dependence eiw‘ as having a frequency 
w/z = o x (acceleration of observer). To such an observer the wall surface would appear 
to have a temperature of (acceleration/2n), From the point of view of the observer 0, 
a wall which recedes with acceleration K in flat space-time acquires a temperature of 
42n ,  which is the same temperature as that acquired by the surface of a collapsing star 
receding with a (proper) acceleration K. 

4. Interpretation of results 

I t  has been emphasized by B S de Witt (1974, unpublished communication) that particle 
production is expected in Minkowski space containing neutral reflecting surfaces in 
certain states of motion. In particular such production would be expected from a 
uniformly accelerated wall. However, the system being quantized here consists of a 
region of Minkowski space equipped with an unaccelerated wall described by an 
accelerated coordinate system. The apparent production of particles in this case is 
somewhat paradoxical, because there is no obvious source of energy for this production. 
Such emission of radiation is of course absent when the system is quantized in conven- 
tional Minkowski coordinates, so that the result demonstrates how the concept of a 
particle is ill-defined and observer-dependent. 

Fulling (1972) has drawn attention to various reasons why one might reject the 
identification of ‘Rindler’ particles as defined here with real physical particles. The 
Rindler coordinates have a singularity at z = 0 and the curves of constant z are not 
geodesics. More seriously, the cordinate system does not cover the entire space-time 
but only the wedge-shaped region between the two null lines. This objection would 
not be expected to matter much in the discussion of high energy particles which can be 
localized in a small region compared to the distance between an observer and his 
horizon. However, at low energies when the wavelength becomes comparable with the 
horizon distance, the global properties of the coordinate system will become relevant 
to the discussion of particles, and the quantization scheme might be expected to become 
inapplicable. It is significant then that the above calculation (see expression (22)) 
indicates that particle creation effects are negligible at high frequencies, and only become 
appreciable when U- ’ is comparable to the horizon distance. 

At this point it is interesting to recall the close analogy between the Rindler coordinate 
system and the Schwarzschild system in the exterior region of a spherically symmetric 
collapsing object. Fulling (1973) has written : 

‘Rindler coordinates are just as appropriate for the description of the region of flat 
space which they cover as Schwarzschild coordinates are for the study of the space 
around a massive body outside the radius r = 2M.  If the theory fails in this test case, 
it probably must also be rejected for the Schwarzschild metric.’ 
It might therefore be expected that the present discussion had a superficial bearing 

on the Hawking result for black holes. Certainly the mathematical details of the particle 
production rate are very similar. Physically also, the appearance to the accelerated 
observer of the retreating wall has the same features as that of the retreating surface of a 
collapsing object to an asymptotic observer. In both cases any intrinsic surface lumino- 
sity rapidly fades due to the red shift, while a constant apparent luminosity is super- 
imposed. Quantitatively the expressions for the temperature of this radiation emission 



Particle production in Schwarzschild and Rindler metrics 615 

are directly analogous, with the acceleration of the wall replacing the surface gravity in 
Hawking’s formula. 

Clearly then the definition of particle in the black hole case must also be approached 
with some caution. In the region of the horizon the quantization scheme may have to 
be modified. 

Indeed Hawking has proposed that a freely-falling observer would not see a large 
amount of particle production near a black hole as he approached the horizon. However, 
Hawking advances the comparability of long wavelengths with horizon size as evidence 
for low-frequency particle production, rather than for a break down in the definition of 
particle in this regime. 

In spite of the close similarities between the present calculation and that of Hawking 
there are some significant differences. For example, in the former case the temperature 
of the emitted radiation falls like z - ’  along a null line passing to higher and higher 
values of z. In the latter case this temperature tends to an asymptotically constant 
value. The difference can be traced to the fact that Rindler space reproduces the effect 
of an inverse first-power gravitational field, as opposed to the inverse square behaviour 
around a collapsing object. Thus there is an additional red shift present in the Rindler 
case which progressively reduces the temperature of the radiation to zero. Consequently 
an accelerated observer in the Rindler system will always see the radiation peaked at a 
wavelength comparable with his horizon distance, however far from the wall he is located. 
In the black hole case the metric becomes Minkowskian asymptotically and the emitted 
particles may be localized well away from the horizon. Moreover, Hawking’s treatment 
is based on a Kruskal representation rather than Schwarzschild. Differences such as 
these make it unclear to what extent the paradoxes of the present result are relevant to 
Hawking’s result. 

5. Remarks on exploding black holes 

Assuming that black holes do  produce real physical particles at the rate predicted by 
Hawking, there exists a number of important implications for elementary particle 
physics and cosmology. 

Hitherto, it has usually been assumed that the collapse phase may be ignored in 
considerations of the end states of black holes. This is based on the belief that all col- 
lapsing objects whatever their internal constitution, rapidly settle down to one of the 
standard black hole solutions which are parametrized only by mass, charge and angular 
momentum. Thus the very term ‘black hole’ is defended on the grounds that although 
for an asymptotic observer a collapsing object takes an infinite amount of time to 
reach the event horizon, and is therefore in principle not a ‘collapsed’ but always just 
a ‘collapsing’ object, nevertheless in practice the properties of the latter grow rapidly 
like the former as the collapse proceeds. For example, the surface luminosity fades out 
exponentially on a time scale of order milliseconds for a solar mass object. 

Now the production of particles by black holes relies crucially on the early stages of 
the collapse, when signals may still travel right through the collapsing object and reach 
an asymptotic observer located on the far side. Indeed, an examination of quantum 
field theory in the static end state situation only indicates unambiguously that there is no 
particle production (except for that associated with the phenomenon of super-radiance). 

In the light of these remarks it seems that Hawking’s result obliges us to make a clear 
distinction between ‘black hole’ and ‘collapsing object’ after all. Consequently many of 
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the theorems and properties of black holes discovered in the last few years may well 
have diminished application in the real world, where one is really only concerned with 
gravitational collapse. 

For example, any collapsing objects with initial masses less than 1015 gm would have 
evaporated away during the lifetime of the universe. Such an object would consist of. 
say, a collapsing cloud of protons and electrons. In a very short proper time as measured 
by these collapsing particles, the protons and electrons would disappear, their energy 
being transformed into photons, neutrinos and gravitons. I t  is not therefore clear that a 
horizon will form at all. Consequently any discussion of the situation of these particles 
in the interior Schwarzschild region would be inappropriate. Whereas it was previously 
assumed that a particle could cross without incident into the interior Schwarzschild 
region and then inevitably proceed towards a singularity, it now seems (as far as the 
author can see) that there is a physical barrier which prevents this. If these conclusions 
also apply to objects more massive than 1015 gm (which might depend on cosmological 
conditions in the far future), then the whole character of discussion about gravitational 
collapse seems to be changed. 

The consequences of Hawking’s result for elementary particle physics are no less 
drastic. Although it has long been appreciated that the laws of conservation of lepton 
number, baryon number etc were transcended in black hole physics, at least as far as 
an asymptotic observer is concerned, this was based on the assumption that a physicist 
would not have access to the contents of the black hole except by sacrificing himself in 
so obtaining. However, the physicist is now at liberty to measure quite precisely the 
baryon number of the object before it collapses, and compare it with the baryon number 
of the particles emitted, after the object has evaporated. It is hard to see how the con- 
clusion that these conservation laws are actually violated can be avoided. 
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